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ABSTRACT 
Attempts to apply more evidence-based methodologies to traffic safety have recently intensified. One such attempt 

is the Highway Safety Manual (HSM, 2010), which provides crash modification factors (CMFs) for a variety of 

roadway treatments. CMFs provide traffic practitioners with the resources to estimate the safety effects of various 

countermeasures. At the moment, the HSM does not provide CMFs for traffic flow parameters despite the 

significant differences in the number of crashes on segments with similar geometric parameters and average 

annual daily traffic (AADT). This study develops CMFs associated with change in hourly traffic flow conditions 

for 2008 through 2011 on three similar urban freeway segments in New Jersey using Empirical Bayes (EB) for 

before-after road safety studies. Specifically, this study focuses on traffic density expressed as level of service 

(LOS). Results show significantly that, as the LOS deteriorates from A to B, B to C, C to D, and D to E, the 

resultant CMFs are 0.673, 1.11, 0.865, and 1.452 respectively. This demonstrates that traffic flow parameters have 

some significant effect on roadway safety, therefore needs to be investigated further and eventually included in 

the future editions of the HSM. 

 

INTRODUCTION  
Although many safety studies have addressed how geometric parameters influence roadway safety, few have 

investigated and acknowledged that traffic flow parameters have significant influence on safety. One such study 

is by Kononov et al. (2008) which states that transportation practitioners usually believe that additional capacity 

due to additional lanes is associated with increased safety. However, how much safety and for what time period 

is generally not considered.  

 

A misinterpretation of the real relationship between accidents and exposure usually leads analysts to simply divide 

the number of accidents by volume of vehicles at a given site (Nordback et al., 2014), a metric Hauer (1995) states 

that represents a fundamental misunderstanding and the results can be misleading. To increase accuracy and 

certainty, through thorough research, in 2010, transportation practitioners were presented with a significant tool, 

the first edition of the HSM. Part D of the manual provides CMFs which serve to predict the safety effect for a 

variety of actions referred to as either countermeasures, interventions, treatments or decisions (HSM, 2010).  

 

Through continued research there are efforts to update the current CMFs and include new CMFs in the next edition 

of the HSM. One such effort is by the American Association of State Highway and Transportation Officials 

(AASHTO) in conjunction with Transportation Research Board (TRB) through anticipated project NCHRP 17-

72 calling for the updating of current CMFs and inclusion of new CMFs for the next edition of the HSM. In an 

effort to improve roadway safety and the fact that roadway locations with similar geometric features and AADT 

have recorded significantly different number of accidents (Qin et al., 2000), this study evaluates traffic flow 

parameters and their effects on roadway safety by developing relative CMFs.  

 

This study presents a methodology for developing CMFs for traffic flow parameters specifically traffic density, a 

measure of effectiveness used to define the LOS on a basic freeway segment (HCM, 2010;  Roess et al., 

2011). To find the expected CMFs, this study develops a method for creating LOS specific EB for before-after 
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road safety studies, such as those used for geometric parameters in the HSM and applies the method to accidents 

on basic freeway segments when the LOS deteriorates. To the knowledge of this paper’s authors, these are the 

first CMFs associated with LOS on basic freeway segments. Research by Kononov et al. (2008), Poch and 

Mannering (1996), and the calling for continued research in this area by TRB show such studies as needed, 

rendering this study as an important initial step towards fulfilling this need.   

 

Improved insight for the basic relationship of traffic flow parameters and how they influence safety on roadways 

will assist to lay the foundation for future studies and allow transportation safety researchers to investigate specific 

geometric, traffic flow, human or weather factors that may influence safety on roadways. The motivation for this 

study is not to establish conclusive CMFs for changing LOS, but to lay a foundation for future studies in this area 

and open up discussion on how traffic flow parameters influence roadway safety. This study achieves this by 

presenting a case study where on the same and similar freeway segments, the number of accidents/incidences are 

measured and evaluated when the LOS deteriorates progressively from A to E.  

 

LITERATURE REVIEW 
The HSM presents many CMFs for geometric parameters for both interrupted and uninterrupted facilities. They 

show the relationship(s) between the number of accidents and given roadway parameters established using crash 

data from hundreds of locations with comparable roadway features (Nordback et al., 2014). The HSM shows how 

to predict crashes at similar basic freeway segments by using safety performance functions (SPFs) and predictable 

models such as EB to determine CMFs based on geometric parameters and AADT. The manual however does not 

consider other factors like traffic flow/operational parameters which although not quantified, studies acknowledge 

that they do influence safety (Kononov et al., 2011; 2012a; 2012b; 2012c).  

 

However conflicting or consistent the conclusions of previous studies, they all show that there is a relationship 

between the number of accidents and traffic flow parameters such as hourly volumes, although its precise form is 

still unknown (Qin et al., 2000).  Logically, accidents at a specific time should relate closely to the hourly traffic 

volumes or more accurately, to real-time traffic volumes.  Qin et al. (2000) and Abdel-Aty and Pande (2007) 

continue on that the exposure measures such as AADT, Vehicles-Miles Travelled (VMT), or Number of Vehicles 

Entering (NEV), are applied to quantify the opportunity for accidents and are aggregate quantities that do not 

consider temporal traffic variation experienced though the day. In their study’s literature review, Abdel-Aty and 

Pande (2007) sites Frantzeskakis and Iordanis (1987);  Persaud & Nguyen (1998) and Abdel-Aty, Pemmanaboina, 

& Hsia, (2006) by stating that the mentioned ‘microscopic’ traffic parameters not only include hourly volume but 

logical measures of congestion represented by v/c ratio  and  LOS, along with distributional properties of variation 

in speed.  

 

As stated, previous studies have found different results. For example, as cited by Frantzeskakis and Iordanis 

(1987), Lord et al. (2005) and Persaud and Nguyen (1998) show that both the number of accidents and crash rates 

increase as the LOS deteriorates from A to F. However, Cedar and Livneh, 1982a & 1982b, Qin et al. (2000) and 

Roess et al. (2011) show that the relationship between the number of accidents and the disaggregate exposure, i.e. 

hourly volume, is indeed non-linear. A trend Lord et al. (2005) also finds while investigating relationships between 

crashes and traffic flow characteristics in Quebec, Canada.  Using predictive models, three series of predictive 

models that relate crash-flow, crash-flow-density and crash-flow-volume to capacity (v/c) ratio and determines 

that traffic volume, vehicle density, and the v/c ratio have direct influence on the likelihood and severity of a 

crash.   

 

The HSM, Hand Book of Safety Measures and FHWA’s Crash Modification Factor Clearinghouse show how to 

develop quality CMFs using crash predictive or SPF statistical models. Studies that have adopted the same  

include: (1) Lord et al. (2005), the study concludes that crash risk and the number of crashes increases as vehicle 

density increases; (2) Cedar and Livneh (1982b)  investigates the relationships between measures of accidents and 

traffic flow by considering hourly flow using power functions to evaluate accident data collected on eight four-

lane road sections for a period of eight years in England, the study determines that there is a U-shaped relationship 

between hourly flow rate and the number of crashes; and (3) Qin et al. (2000) investigates the relationship between 

crash occurrence and hourly volume counts on rural two-lane highway segments in Michigan and Connecticut by 
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using hierarchical Bayesian framework with Markov Chain Monte Carlo (MCMC) algorithms to estimate the 

posterior distributions for crash probabilities as a function of hourly volume and time of day, the study shows that 

the expected crash count on two equal length segments with the same AADT and physical characteristics will 

vary according to the distribution of traffic volume through the time of the day. 

 

Knowing that on a basic freeway segment, hourly volumes are dynamic and are constantly changing together with 

the fact that an accident is a rare, random, and independent event, appropriate predictive and SPFs statistical 

models are used by this study to account for either over-dispersion or under-dispersion and regression-to-mean 

(RTM) characteristics associated with crash data Tegge et al. (2010) and bias in site selection Lan et al. (2009). 

Studies show that the appropriate SPFs and predictive models to be Poisson regression distributions and negative 

binomial (NB) distributions (Anastasopoulos and Mannering, 2009; Lord and Mannering, 2010; Pande et al., 

2000; Poch and Mannering, 1996; Stamatiadis et al., 2009) and the EB used to correct for the RTM effects (Gross 

et al., 2010; Hauer, 1995; Srinivasan et al., 2008).  

 

MODELLING APPROACH 
CMFs are developed by evaluating roadway incidences before and after implementation of a given 

countermeasure(s), and as stated in the FHWA’s Crash Modification Factor Clearinghouse, countermeasures can 

be positive (improve safety) or negative (degrade safety). As a result, it is paramount to conduct prior tests before 

implementation but most importantly, the selected method of evaluation should be fitting, inclusive and reliable. 

This study adopts the EB before-after model because it has the ability to account for (1) RTM effects due to sites 

experiencing randomly high short-term crash counts selected for treatment and show reduction in crashes 

afterwards when these counts regress towards their true long-term mean and vice versa, and (2) changes in traffic 

volumes, time trends in crash occurrence due to changes over time in factors like weather, human habits, and 

crash reporting practices (Gross et al., 2010; Persaud and Lyon, 2007) , and bias in site selection (Lan et al., 2009). 

In addition, in the past 30 years, EB models have been used successfully by other researchers to perform this type 

of evaluations (Elvik, 2008).  

 

Empirical Bayes (EB) Model 

In the EB before-after evaluation of a treatment effect, the change in crashes at a basic freeway segment is given 

by: 

 

 

𝐴 − 𝐵 (1) 

 

 

where B is the ‘expected’ number of accidents that would have occurred in the ‘after’ period without treatment 

and A is the number of accidents observed in the after period.  These changes may be due to differences in traffic 

volumes, along with RTM, trends in crash reporting, and other factors, it is now accepted that the count of crashes 

before a treatment by itself is not a good estimate of B (Hauer, 1996 cited by Persaud and Lyon, 2007). Instead, 

B is estimated from an EB procedure in where SPFs are initially used to estimate the ‘predicted’ number of crashes 

expected in a given time ‘before’ period at selected locations with similar traffic volumes and physical 

characteristics to that being analyzed.  The sum of these SPF ‘predicted’ estimates (PB) is then combined with the 

observed accidents (OB) in the ‘before’ period to obtain the ‘expected’ number of accidents (EB) before treatment 

also referred to as the unadjusted EB estimate. This estimate of EB is 

 

 

𝐸𝐵 = 𝑤. 𝑃𝐵 + (1 − 𝑤)
𝑂𝐵

𝑛
  

(2) 

where n is the time period of observation and w is the weight factor estimated as 

 

 

𝑤 =
1

1 + 𝑘 ∑ 𝑃𝑛
𝑁
𝑛=1

 
(3) 
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where k is the dispersion parameter of the NB distribution that is assumed for the crash counts used in estimating 

the SPF, and Pn is the predicted number of accidents for period time n. k is estimated from the SPF calibration 

procedure with the use of maximum likelihood procedure.  

 

Safety Performance Functions (SPFs) 

As discussed, SPFs also referred to as predictive models Zhong et al. (2008) are part of the EB studies and are 

used to determine the ‘predicted’ accident counts. SPFs are regression statistical models relating accident counts 

to their causing factors.   There are several SPFs but the two most accurate and common types are Poisson and 

NB models (Tegge et al., 2010).   

 

This study develops SPFs for the hourly accident frequency on basic freeway segments, by estimating five 

different hourly accident frequencies for the ‘predicted’ accidents when the basic freeway segments at the study 

sites are operating at LOSs A, B, C, D, and E. LOS F was not evaluated since the segment is failing in this state, 

that is the demand flow exceeds capacity. For all LOSs, the dependent/outcome variable, hourly crash frequency, 

is a non-negative integer. Since accident data is discrete, nonnegative, and sporadic, the Poisson regression model 

is the natural first choice for modeling (Poch and Mannering, 1996). However, as discussed, the Poisson regression 

model has a key setback, that is the variance of the dependent variable is constrained to be nearly or equal to its 

mean. Literature shows that accident data is likely to be over-dispersed (Tegge et al., 2010) that is, the variance 

is likely to be significantly greater than the mean. In such a situation, if the Poisson is used in evaluation, the 

model coefficients tend to be underestimated and biased. To correct or account for such, the NB distribution is 

adopted. 

 

The NB model is derived from the Poisson model. For the Poisson model, the chance of having a certain number 

of accidents at a given basic freeway segment i(yi) per hour (where yi is a non-negative integer) is 

  

 

𝑃(𝑦𝑖) =
𝑒𝑥𝑝(−𝜇𝑖)𝜇𝑖

𝑦𝑖

𝑦𝑖!
 

(4) 

 

 

where P(yi) is the probability of an accident occurring on segment i, ni times per hour; and µi is the Poisson 

parameter for segment i, which is equal to segment i’s probable accident frequency per hour. The accident data is 

fit to the Poisson model by specifying the Poisson parameter µi to be a function of explicatory roadway and traffic 

variables of traffic volume, posted speed limit, number of lanes, lane width, shoulder width and density. This is 

accomplished by specifying the Poisson parameters as  

 

 

ln 𝜇𝑖 = 𝛽𝑋𝑖 (5) 

 

where Xi is a vector of explicatory variables; and β is a vector of estimable coefficients. The Poisson model defined 

in equations 4 and 5 is estimable by standard maximum likelihood methods with the likelihood function  

 

 

𝐿(𝛽) = Π𝑖

𝑒𝑥𝑝[−𝑒𝑥𝑝(𝛽𝑋𝑖)][𝑒𝑥𝑝(𝛽𝑋𝑖)]𝑦𝑖

𝑦𝑖!
 

(6) 

 

 

Through integration, equation 6 gives the unconditional distribution of yi. The formulation of this distribution is 

used in maximum likelihood estimation, the foregoing results in a NB model that can be used to write a likelihood 

function for coefficient estimation as 
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𝑃(𝑦𝑖) =
Γ (𝑦𝑖 +

1
𝑘)

𝑦𝑖! Γ (
1
𝑘)

(
𝑘𝜇𝑖

1 + 𝑘𝜇𝑖
)

𝑦𝑖

(
1

1 + 𝑘𝜇𝑖
)

1
𝑘
 

(7) 

 

 

where Γ is the gamma function, μ is the negative binomial mean, and k is the dispersion parameter. The NB model 

allows the mean to differ from the variance such that 

 

 

var 𝑛𝑖 = 𝐸(𝑛𝑖)[1 + 𝛼𝐸(𝑛𝑖)] (8) 

 

where α is the measure of the dispersion and can be estimated using the standard maximum likelihood techniques. 

The appropriateness of the NB relative to the Poisson model is determined by the statistical significance of the 

estimated α. If α is not statistically different from zero, the NB simply reduces to Poisson regression with var 𝑛𝑖 =
𝐸(𝑛𝑖). If α significantly different from zero, then the NB is adopted and the Poisson regression is inappropriate. 

 

The log linear model for the ith roadway segment with q parameters Xi1, Xi2, Xi3 ...  Xiq, and regression coefficients 

β0, β1 … βq takes on the form 

 

 

log(𝜇) = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + ⋯ + 𝛽𝑞𝑋𝑖𝑞  (9) 

 

Using equation 9, the ‘predicted’ number of accidents are estimated and together with the observed accidents used 

to calculate EB as shown in equation 2. The final and main task is to develop the CMFs relative to the deteriorating 

LOS conditions discussed.  

 

Development of Crash Modification Factors, (CMFs) 

The ‘expected’ accident frequency found in equation 2 is used in the development of CMFs as published by the 

U.S. Department of Transportation Federal Highway Administration’s “A Guide to Developing Quality Crash 

Modification Factors” (Gross et al., 2010).  In the initial step, the ‘expected’ accident frequency in the ‘after’ 

period in the treatment group that would have occurred without treatment, (EA) is 

 

 

𝐸𝐴 = 𝐸𝐵 ∗ (
𝑃𝐴

𝑃𝐵
) 

(10) 

 

 

where EB, and PB are as previously described and PA, is the predicted number of crashes, (i.e. sum of SPF 

estimates) in the ‘after’ period. The variance of EA is estimated as 

 

 

𝑣𝑎𝑟 (𝐸𝐴) = 𝐸𝐴 ∗ (
𝑃𝐴

𝑃𝐵
) ∗ (1 − 𝑤) 

(11) 

 

 

and finally, the CMF is approximately equal to the ‘after’ period accident counts divided by the EA. It is an 

approximate because of a small adjustment based on EA and its variance as  

 

 



  
[Maina* 4(12): December, 2017]                                                                               ISSN 2349-4506 
  Impact Factor: 2.785 

Global Journal of Engineering Science and Research Management 

http: //  www.gjesrm.com        © Global Journal of Engineering Science and Research Management 

 [56] 

𝐶𝑀𝐹 =
(

𝑂𝐴

𝐸𝐴
)

1 + (
𝑣𝑎𝑟(𝐸𝐴)

𝐸𝐴
2 )

 

(12) 

 

 

 

 

𝑣𝑎𝑟𝐶𝑀𝐹 = 𝐶𝑀𝐹2 [
((1 𝑂𝐴⁄ ) + (𝑣𝑎𝑟𝐸𝐴 𝐸𝐴

2⁄ ))

(1 + (𝑣𝑎𝑟𝐸𝐴 𝐸𝐴
2⁄ ))

2 ] 
(13) 

 

 

DATA COLLECTION, DESCRIPTION AND PREPARATION 
The data for this study were collected from New Jersey Department of Transportation’s straight-line, accident and 

traffic counts databases.  Hourly traffic volumes were matched with the accident and geometric features for each 

of the freeway segments to ensure consistency. Entities that had missing information were eliminated and 

consequently not used for evaluation. The study period runs from 2008 through 2011 and a total 14 one mile long 

basic freeway segments are studied. The count stations at these locations provide 24-hour traffic volume, resulting 

in 96 hours of volume counts a day and 1344 hours for the entire period of study. 

 

As Table 4.1 shows, three urban freeways are considered for evaluation; five segments on US 1 and NJ 21 and 

four segments were selected on NJ 3. Characteristics for each freeway segment are summarized; they are posted 

speed (mi/hr.), number of lanes, lane width (ft.), shoulder width (ft.), and median width (ft.).  

 

Table 4.1Characteristics of the study Locations 

Roadway Mile Post Posted 

Spd. (mph) 

Number of 

Lanes 

Lane 

Width (ft.) 

Shoulder 

Width (ft.) 

Median 

Width (ft.) 

US Route 1 46.00 50 3 8 6 8 

47.20 50 2 12 3 8 

48.20 50 2 12 8 4 

50.50 50 2 12 3 4 

52.29 45 2 12 0 4 

NJ Route 3 0.80 55 3 12 12 26 

3.10 55 3 12 12 26 

5.50 55 3 12 12 8 

9.50 50 3 12 15 6 

NJ Route 21 4.40 45 3 11 0 6 

5.00 50 3 12 12 6 

7.10 55 3 12 12 8 

9.70 55 3 12 12 8 

12.40 55 3 12 12 10 

 

The volume densities for each hour were calculated and respective LOS assigned for each of the 1344 entries 

using the procedures presented in the Highway Capacity Manual (2010). The data were then sorted according to 

their LOS and the entities with the LOS F were not considered for evaluation as discussed. There were 177 entities 

that corresponded with LOS F. As a result, the sample size reduced from 1344 to 1167 hours.  

 

With such a sample size and predictor variables, a linear correlation test was performed using Pearson correlation 

matrix to measure the strength and direction between the predictor variables in order check for multi-collinearity.  

Multi-collinearity is the situation where two or more predictor variables may have strong correlation and 

consequently, the regression results may show some inconsistency by misleadingly inflating the standard errors 
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which in return  makes some variables to be statistically insignificant while they are actually  significant and vice 

versa.  For example, the F-Test may show that the data fits well even though none of the predictor variables 

influences the dependent variable significantly (Kutner et al., 2004). The results of the correlation test are 

presented in Table 4.2.  

 

Table 4.2Pearson Correlation Matrix 

  

Traffic 

Vol./ hr. 

Posted 

Spd 

(mi/hr.) 

Number 

of Lanes 

Lane 

Width 

(ft.)  

Shoulder 

Width 

(ft.) 

Median 

Width 

(ft.) 

Density 

(veh/mi) 

Traffic 

Vol./hr. 

1 0.211 0.401 -0.209 0.257 0.362 0.622 
 0.000 0.000 0.000 0.000 0.000 0.000 

Posted Spd 

(mi/hr.) 

0.211 1 0.484 0.238 0.788 0.559 0.148 

0.000  0.000 0.000 0.000 0.000 0.000 

Number of 

Lanes 

0.401 0.484 1 -0.217 0.642 0.401 0.155 

0.000 0.000  0.000 0.000 0.000 0.000 

Lane Width 

(ft.)  

-0.209 0.238 -0.217 1 0.257 0.090 -0.074 

0.000 0.000 0.000  0.000 0.001 0.007 

Shoulder 

Width (ft.) 

0.257 0.788 0.642 0.257 1 0.390 0.116 

0.000 0.000 0.000 0.000   0.000 0.000 

Median 

Width (ft.) 

0.362 0.559 0.401 0.090 0.390 1 0.250 

0.000 0.000 0.000 0.001 0.000   0.000 

Density 

(veh/mi) 

0.622 0.148 0.155 -0.074 0.116 0.250 1 

0.000 0.000 0.000 0.007 0.000 0.000   

 

Following the outcome of the correlation test, the model(s) with the best fitting predictor variables were selected 

on the criteria that: (1) the predictor variables had to show no or have weak correlation (that is the r value had to 

be between the absolute value of 0 and 0.29 (Navidi, 2008), (2) the predictor variables have to be statistically 

significant at a 0.1 significance level, and (3) the selected model(s) had to have traffic volume and density among 

the predictor variables. Three models met the prescribed criteria: 

 

Model I: Traffic Volume, Posted Speed, Lane Width, Density; 

Model II: Traffic Volume, Shoulder Width, Lane Width, Density; and 

Model III: Traffic Volume, Posted speed, Lane Width, Number of Lanes, Shoulder Width, Density 

 

DATA ANALYSIS AND INTERPRETATION 
The first step in this section involved testing each model to determine which model’s data fit well. To do so, a 

goodness-of-fit test was conducted and the results were presented in Table 4.3 as follows 

 

Table 5.1Goodness-of-Fit test for Models I, II, and III 

    MODEL I MODEL II MODEL III 

LOS Parameter Value df Value/df Value df Value/df Value df Value/df 

A 

Deviance 463.37 432 1.07 464.32 432 1.08 461.90 429 1.08 

Pearson Chi-

Square 
458.56 432 1.06 463.55 432 1.07 452.82 429 1.06 

Sig. 0.00   0.00   0.00   

B 

Deviance 268.98 245 1.10 268.06 245 1.09 269.49 242 1.11 

Pearson Chi-

Square 
276.64 245 1.13 271.74 245 1.11 267.48 242 1.11 

Sig. 0.00   0.00   0.00   

C Deviance 296.79 261 1.14 296.93 261 1.14 296.31 258 1.15 
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Pearson Chi-

Square 
259.21 261 0.99 274.25 261 1.05 260.49 258 1.01 

Sig. 0.00   0.00   0.00   

D 

Deviance 119.68 99 1.21 119.63 99 1.21 119.79 96 1.25 

Pearson Chi-

Square 
100.92 99 1.02 100.25 99 1.01 101.87 96 1.06 

Sig. 0.29     0.14     0.01     

E 

Deviance 108.71 100 1.09 109.82 100 1.10 100.93 97 1.04 

Pearson Chi-

Square 
101.09 100 1.01 108.78 100 1.09 90.42 97 0.93 

Sig. 0.00     0.00     0.00     

 

At each LOS for all the three models, Table 5.1 shows the respective Deviances and Pearson Chi-Squares values 

and their respective significance levels. The Deviance has an approximate chi-square distribution with n-p degrees 

of freedom, df, where n is the number of observations and p is the number of the predictor variables including the 

intercept. It is expected that the value of the chi-square random variable to be equal to the df, that is this ratio is 

expected to be equal or approximately equal to 1. Using this criterion and referring to the values in Table 5.1, all 

the three models fit the data well since the ratios of the Deviance to df (Value/df) are approximately 1 at a 

significance level of 0.1. 

 

However, only model III was considered for the development of the SPFs because it contains more variables than 

models I and II. The values of the SPF evaluations, are presented in Table 5.2 as follows 

 

Table 5.2SPF Parameter Estimates 

 
 

Table 5.2 shows the NB regression coefficients for each predictor variable and k at each LOS, along with their 

standard errors, and significance levels.  Since all the ks are greater than zero, it is an indication that the variances 

are greater than the means, a phenomena referred to as over-dispersion and therefore the NB distribution is 

appropriate. 

 

The results show that at all LOSs the lane width is positive indicating that crash frequency increased with increased 

lane width.  The posted speed is positive at LOS B, and E, and negative at LOS A, C, and D indicating differing 

effects by LOS of posted speed on crash frequency.  The number of lanes is positive at all LOS except at LOS C 

and A, indicating that for LOS B, D, and E, crash frequency increased as the number of lanes increased.  The 

shoulder width has a negative influence on crash frequency indicating that the crash frequency decreased as the 

shoulder width increased.  Density is negative at all LOSs except at LOS C an indication that crash frequencies 

decreased as density increased. 

 

Parameter B Std. 

Error

Sig. B Std. 

Error

Sig. B Std. 

Error

Sig. B Std. 

Error

Sig. B Std. 

Error

Sig.

(Intercept) -1.949 2.044 0.014 -5.560 3.141 0.077 -2.753 3.031 0.047 1.528 6.251 0.033 -12.984 6.598 0.034

Traffic Volume / hr. 0.001 0.001 0.058 0.001 0.001 0.102 0.000 0.001 0.097 0.001 0.002 0.019 0.001 0.002 0.051

Posted Speed Limit (m/h) -0.070 0.030 0.020 0.061 0.036 0.086 -0.060 0.030 0.044 -0.036 0.040 0.037 0.198 0.048 0.000

Number of Lanes 0.865 0.301 0.004 -0.082 0.685 0.051 0.516 0.960 0.059 -2.051 2.765 0.058 -2.567 4.290 0.055

Lane Width (ft.) 0.183 0.081 0.025 0.225 0.127 0.075 0.307 0.106 0.004 0.407 0.234 0.082 0.431 0.192 0.025

Shoulder Width (ft.) -0.043 0.023 0.065 -0.093 0.029 0.001 -0.031 0.021 0.014 -0.009 0.033 0.045 -0.108 0.096 0.025

Density (veh/mi) -0.092 0.121 0.049 -0.147 0.137 0.028 0.039 0.107 0.071 -0.115 0.171 0.053 -0.001 0.156 0.009

Dispersion (k ) 0.224 0.091 0.167 0.087 0.204 0.074 0.243 0.111 0.293 0.001

LOS A LOS B LOS C LOS D LOS E
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As discussed in Section 3, the SPF coefficients are used to estimate the ‘predicted’ numbers of accidents, the 

dispersion values found during the SPF development are used to estimate the weight factors and the ‘expected’ 

number of accidents. Along with the observed/actual number of accidents, the results of this task are presented in 

Table 5.3 as follows 

  

Table 5.3Actual, Predicted and Expected Number of Accidents 

LOS 

Observed 

/ Actual 

Accidents 

SPF 

‘Predicted’ 

Accidents 

Weight 

factor 

EB 

‘Expected’ 

Accidents 

A 408 174.811 0.025 402.193 

B 297 191.368 0.030 293.795 

C 434 253.915 0.019 430.589 

D 212 144.177 0.028 210.118 

E 267 125.582 0.026 263.258 

 

The values presented in Table 5.3, establish the before-after conditions for all LOSs and therefore give all the 

information required to calculate the EA for deterioration in LOS. For example, when the LOS changes from A to 

B, the OB is 408, the OA is 297, the PB is 174.81, the PA is 191.37, and EB is 402.19. Using these values and the 

procedure discussed in Section 3.3, EA for all the LOS changes were calculated and presented in Table 5.4 as 

follows 

 

Table 5.4Crash Modification Factors for deteriorating LOS on Basic Urban Freeway Segments 

Parameter  LOS A to 

LOS B 

LOS B to 

LOS C 

LOS C to 

LOS D 

LOS D to 

LOS E 

 EB = 402.193 293.795 430.589 210.118 

PA / PB = 1.095 1.327 0.568 0.871 

EA =  440.288 389.818 244.496 183.018 

var (EA) =  469.989 501.531 136.199 154.989 

CMF = 0.673 1.110 0.865 1.452 

var CMF =  0.003 0.007 0.005 0.017 

Std. Error = 0.051 0.083 0.072 0.132 

95% Confidence Interval = 
0.573 - 

0.773 

0.947 - 

1.272 

0.724 - 

1.007 

1.193 - 

1.711 

90% Confidence Interval = 
0.589 - 

0.757 

0.973 - 

1.246 

0.746 - 

0.984 

1.235 - 

1.670 

Expected Safety = -32.71% 10.97% -13.49% 45.22% 

 

Along with the EB, for each deterioration in LOS, Table 5.4 also presents the ‘after’ period SPF estimates to the 

‘before’ period SPF estimates (𝑃𝐴 𝑃𝐵⁄ ) ratios, EAs and their respective variances. These values were used to 

estimate the respective CMFs also presented in Table 5.4. A less than one CMF value shows improvement in 

safety, a one CMF value shows no effect on safety, and a larger than one value shows degradation in safety. Using 

this argument and referring to CMFs in Table 5.4, LOS B and LOS D are the safest since their resultant CMFs are 

less than one and LOS C and LOS E are hazardous since their resultant CMFs are more than one. 

 

The CMF resultant variances and standard errors were found and were used to assist in CMF justification or 

certainty check as presented in Table 5.4. Taking the square root of the variance, the standard errors of the CMFs 

were calculated. All the CMFs except for when the LOS deteriorates from C to D, are significant at the 95% 

confidence level since where the CMF includes 1.0 [95% confidence interval = 0.865 ± (1.96*0.072) = 0.724 to 

1.007]. However, this slightly insignificant result is acceptable at the 90% confidence level because the standard 

error multiplier is 1.645 instead of 95% confidence interval’s 1.96 since 0.865 ± (1.645*0.072) = 0.746 to 0.984, 
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which is less than 1.0. Thus, at 90% confidence level it can be interpreted that the numbers of accidents will reduce 

by 33% when the LOS deteriorates from A to B and by 14% when LOS deteriorates from LOS C to D. Also, at 

90% confidence level, the numbers of accidents are expected to increase by 11% when the LOS deteriorates from 

LOS B to C and by 45% when the LOS deteriorates from D to E. More observations are required to detect the 

same of with 95 % certainty for all LOSs. 

CONCLUSION 
The analysis performed show the potential for traffic flow parameters SPFs to be estimated for the inclusion in 

the future versions of the HSM. It also opens up the discussion for the creations for CMFs so that future 

investigations can contribute to better understand and quantify the effects traffic flow parameters have on roadway 

safety. The main objective for this study was not to estimate definitive CMFs for changes in LOS on basic freeway 

segments, but to rather show that there is a need, it can be done and how to do it. As a result, this study instigates 

the discussion of what a traffic flow parameter SPF and CMF is and why they are important by presenting a case 

study from fourteen sites with 1167 hours of observations. 

 

The CMFs calculated in this study show that: (1) traffic flow parameters in this case hourly volumes have 

significant influence on urban freeway safety; (2) the relationship between hourly traffic volume and numbers of 

accidents can be quantified; finally, the relationship between hourly traffic volumes and the numbers of accidents 

is sinusoidal with LOSs B and D being the safest and LOSs C and E being hazardous. 

 

Results show that, LOS B is the safest of all the five measures of effectiveness, this could be attributed the fact 

that at this LOS, the drivers begin to respond to the existence of other vehicles in the traffic stream even though 

traffic flow is still at free-flow speed. Although drivers can still easily maneuver within the traffic stream, they 

become more vigilant in searching for gaps in the lane flows. LOS E is the most hazardous, the degradation safety 

could be attributed to the fact that there is few of no usable gaps in the traffic stream, and any trepidation due to 

lane changing or merging maneuvers create shock waves and queuing in the traffic stream as a result creating 

conducive conditions for incidences.  

 

The models presented are specific, have been used and tested before, and are appropriate to be used elsewhere. 

While the findings of this study may not apply on other transportation facilities, the same procedure can be applied. 

However, the sample size should be increased to find more accurate and appropriate results. This study provides 

the first traffic flow parameter SPFs and CMFs, however, more research is needed to precisely understand the 

effects of traffic flow parameters on roadway safety. As technology for counting vehicles and recording traffic 

incidences becomes more familiar and improved, appropriate CMFs should be created. As a result, this may lead 

to potential inclusion of traffic flow SPFs and CMFs in future HSM editions.  

 

Improved knowledge on this topic could lead to efficient traffic planning and control of present and future 

transportation facilities hence improving safety. In addition, this could lead to (1) better understanding of what 

facilities and conditions that are safer for drivers, (2) identification of other variables that might influence roadway 

safety such as road surface condition, human and weather features, and (3) better understanding of the already 

identified variables. Thus, continuing to design and maintaining safer transportation facilities. 
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